UPDATE ON DIABETES AND THE HEART

Diabetes and the Heart Overview

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- T2DM Which therapy?

Diabetes and the Heart Overview

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?

Diabetes Incidence and Prevalence

- Epidemic worsening worldwide!
- ½ a billion diabetic patients in the world
- UK: 65% increase in CHF in DM vs non DM
 - 48% more likely to have an MI
 - 331% more likely to have a foot amputation
 - 24.9% more likely to have a CVA
 - 139% more likely to have renal failure
- USA and NA 37 million diabetics in 2013
- Young people with T2DM increasing

Why? Multiple Factors

1960

DIABETES MELLITUS

INAPPROPRIATE DIETARY HABITS

INHERITANCE

DYSLIPOPROTEINEMIA

OBESITY

LACK OF EXERCISE

CIGARETTE SMOKING

HYPERTENSION

PSYCHOLOGICAL PROFILE AND PATTERN OF BEHAVIOR

VIRAL INFECTIONS

IMMUNE REACTION

WHEN YOU NEED

Diabetes and a heart attack

fakeposters.com

What are the Adverse Changes?

- Multiple Co-factors in T2DM
- Complex molecular mechanisms
 - Single nucleotide polymorphisms genetic
 - Insulin binding to Tyrosine/Kinase receptors
 - Glucose transport proteins (GLUT-4)
 - Fat endocrine / J Adiponectin J leptin,
 - Incretins GLP-1, GIP stimulate Insulin
 - Increased use of FFA by organs
- What are the Leading Hypotheses for T2DM?

T2DM TRIUMVIRATE THEORY

De Fronzo 2009

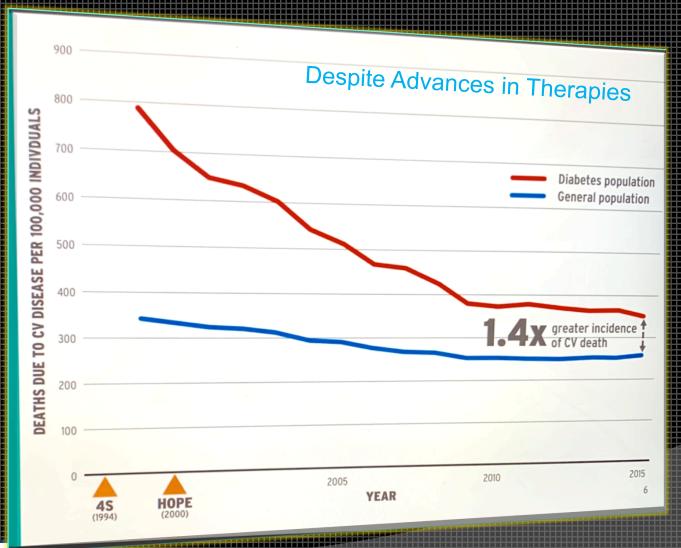
- 1. Insulin resistance at level of the liver
 - hepatic outpouring of glucose: gluconeogenesis and glycogenolysis
- 2. Insulin resistance in peripheral tissues
 - inability to uptake glucose
- 3. Beta cell fatigue and failure
 - declining insulin secretion

THE OMINOUS OCTET

- 1 2. insulin resistance, level of liver and other cells in periphery
- 3. Beta cell failure
- 4. Lipotoxicity fat cells/FFA release
- 5. Incretin system GLP-1 and GIP
- 6. Hyperglucagonemia Alpha cell
- 7. Kidney SGLT-2 upregulated
- 8. Brain and GLP-1

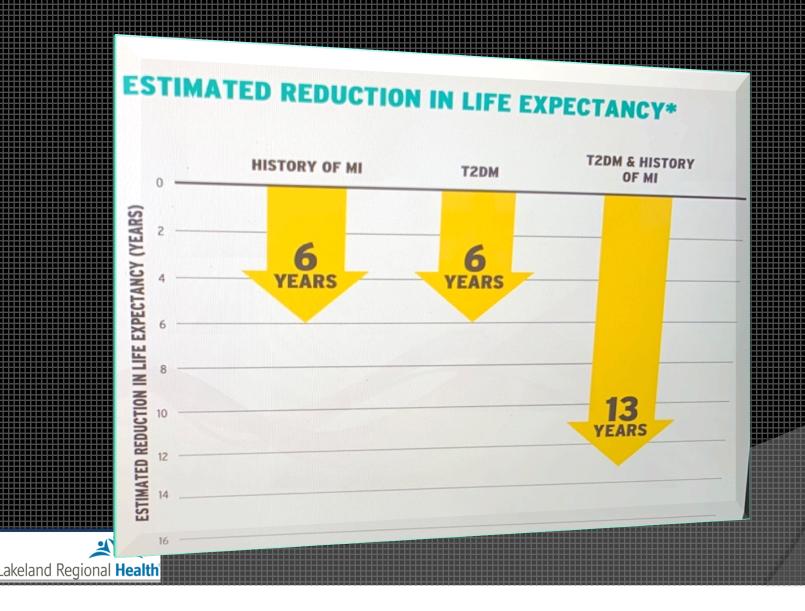
IGT and progression to T2DM

- 2 Hr plasma glucose on OGTT N <140mg/dl</p>
- But pts in 120-139 range have lost 2/3 of their Beta cells
- Upper tertile IGT (180mg/dl +) have lost 85% of B function
- Dx of T2 DM usually at over 80% lost B cells!
- Pts with IGT are Insulin R & 10% have retinopathy already
- Lipotoxicity occurs when FFA insulin secretion TZD may
- Primary treatments last few decades:
- Sulfonylureas to kick start limited B cells
- Metformin to promote cell use of sugars



Diabetes and the Heart Overview

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?


CV Death Rates T2DM

CDC, 4S trial Lancet, HOPE trial NEJM

JAMA 2015: 60 year old pts

Contributors to Heart Disease (2-4X)

Metabolic syndrome (Syndrome X)

Central obesity

High blood pressure

High triglycerides

Low HDL-cholesterol

Insulin resistance

AACE Definition

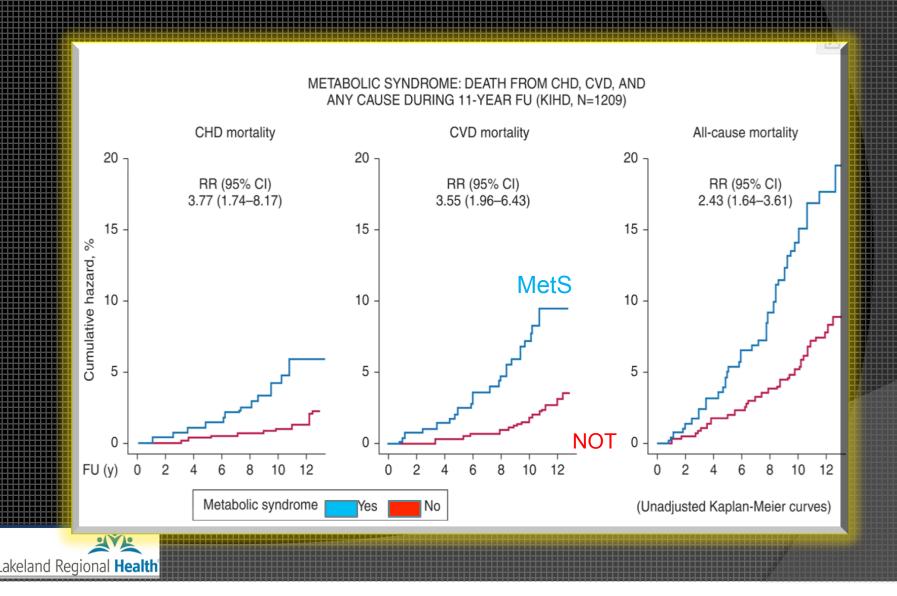
Insulin Resistanc

BMI over 30

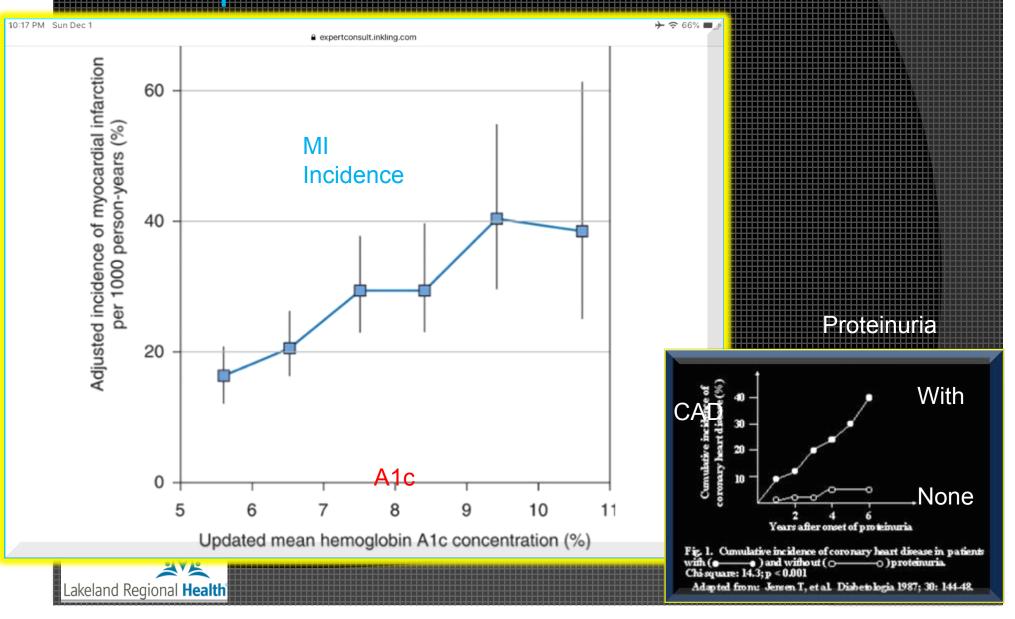
>130/85

>150

<40 M

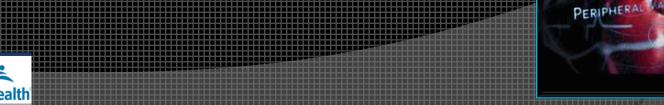

<50 F

FBS>110 2 hr Glu 140-200

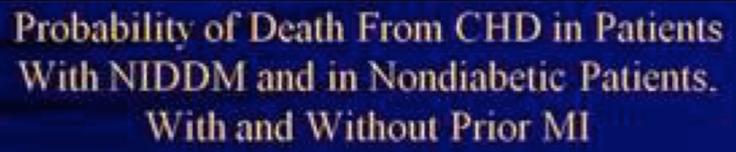

Definition prevalence in NHANES >20yo 34.5%

_akeland Regional Health

Impact of T2DM / MetS on the Heart



Impact of T2DM on the Heart


...Contributors to Heart Disease


- Other Factors (MetS 5x risk of T2DM)
 - Waist circumference
 - Atherogenic dyslipidemia
 - Elevated apo B, small dense LDL, Small HDL
- Proinflammatory state
 - Increased CRP levels, TNF-a TIL-6
- Pro Thrombotic state
 - PAI 1, fibrinogen, hormonal factors

HEART ATTACK

акетани пеутонат пеани

Diabetes and the Heart /Agenda

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?

Diabetic Cardiomyopathy

Is this a thing?

Diabetic Cardiomyopathy

Is this a thing? YES

 Oh yes, and all diabetics are considered to have Stage A CHF and
 CAD equivalence!

Stage A Heart Failure

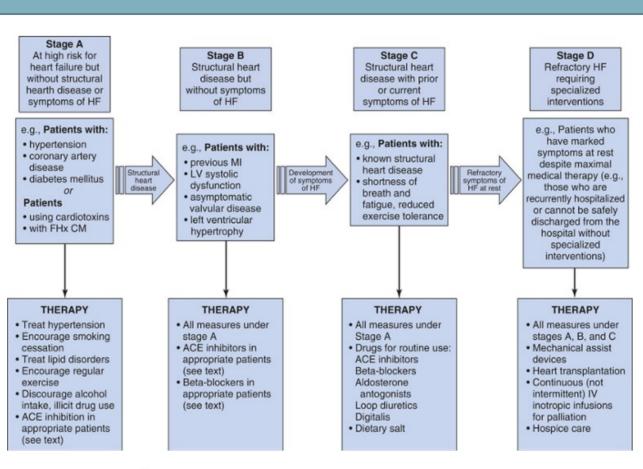
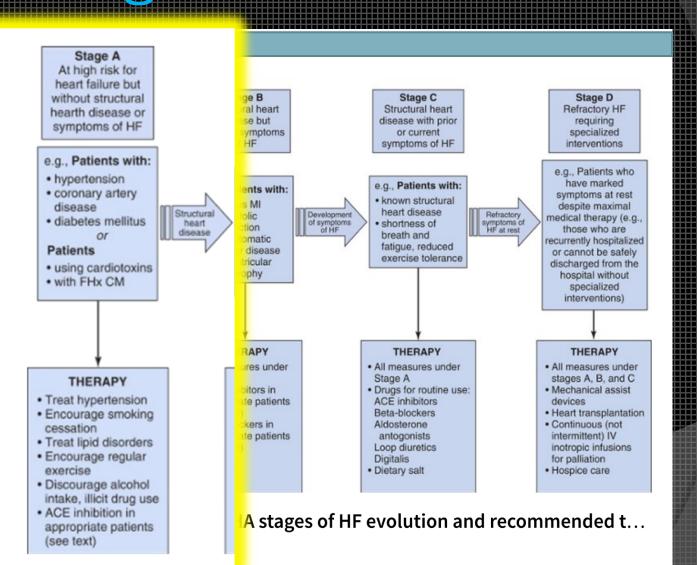



FIGURE 25-1 ACC/AHA stages of HF evolution and recommended t...

Stage A Heart Failure

_akeland Regional **Health**

Cardiomyopathy / CHF

- Systolic and Diastolic dysfunction
 - 60% pt with symptomatic chronic HD have T2DM
 - T2DM & Insulin R are powerful M&M predictors
 - For females with DM CHF risk is 5x normal
- Diastolic dysfunction occurs early
- Diabetic milieu is Toxic
 - FFAs, Endothelial dysfunction, altered Ca++
 - Myocyte injury, fibrosis, microangiopathy
 - 1 "Lipotoxicity"

Mechanisms for Cardiomyopathy

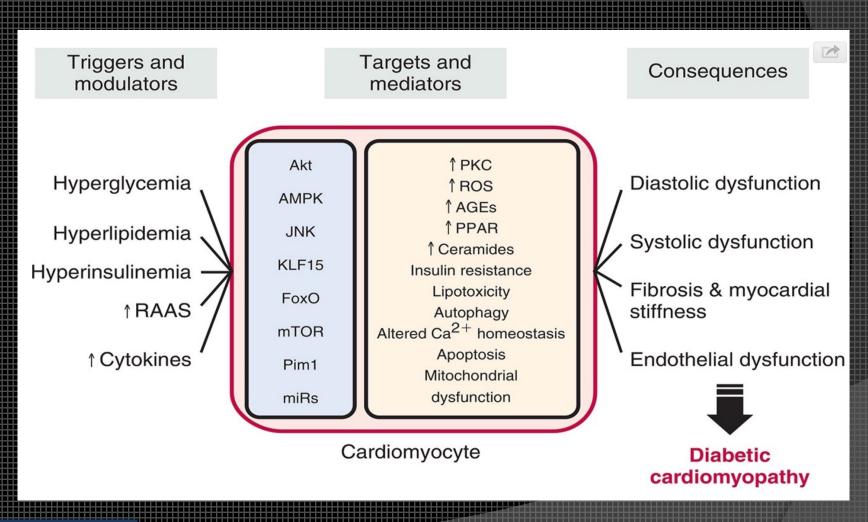
- Independent of presence of CAD
- Cardiac myocytes Normal 2/3 FA use
- 1/3 glucose, lactate, ketone use
- 2 Phases, CMPY early and late
- Early changes
 - Myocyte insulin R, endothelial dysfunction

 - Impaired diastolic compliance, lipotoxicity

Mechanisms for Cardiomyopathy

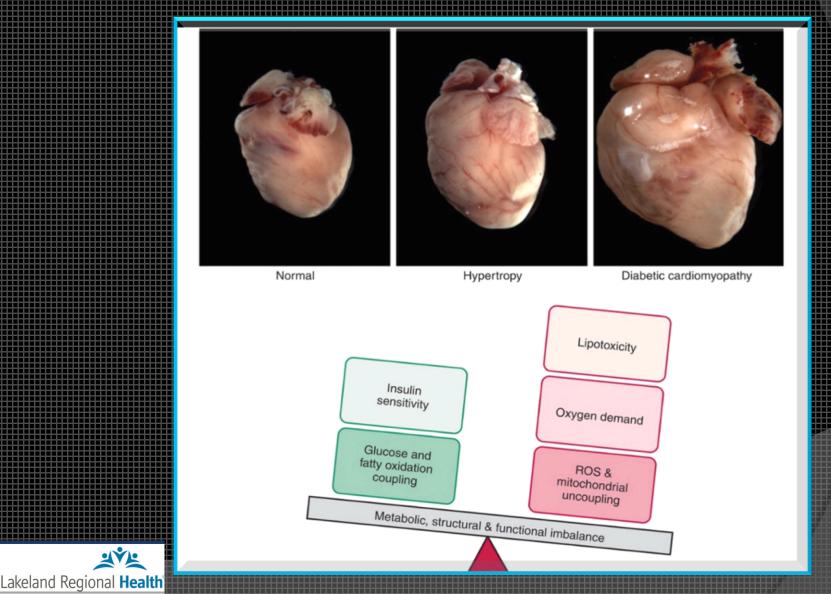
- Independent of presence of CAD
- Cardiac myocytes Normal 2/3 FA use
- 1/3 glucose, lactate, ketone use
- 2 Phases, CMPY early and late
- Early changes
 - Myocyte insulin R, endothelial dysfunction

 - Impaired diastolic compliance, lipotoxicity



...Mechanisms /Cardiomyopathy

- Late phase
 - Myocyte injury, apoptosis
 - CAD, Hypertension, Microangiopathy
 - Cardiac autonomic neuropathy
- Changes in structure:
 - Increased dimensions, wall thickness, mass
 - myocardial microvascular disease



Triggers, Targets and Outcomes

Is That All?

Is That All?

Autonomic cardiac nerves are affected

CV autonomic Neuropathy

- Impairment of autonomic control of CV system in DM
 - After exclusion of other causes
- Poor glycemic control is a contributor, and obesity
- In 20 % of diabetics; is a 3.5x predictor of early mortality
- Orthostatic Hypotension occurs and predicts mortality
- Silent ischemia is present in 30% of CAN
- QT prolongation frequent with CAN
- Exercise intolerance due to altered SNS
- CARTs to diagnose

Diabetes and the Heart Overview

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?

Hypertension

BP is consistently higher in T2DM vs controls
-20% difference in SBP = 45% difference CAD
UKPDS showed 12% 1 MI risk per10mmHg 1 BP

DASH diet / reduce BP 5.5/3.0 mmHg in 8wks!

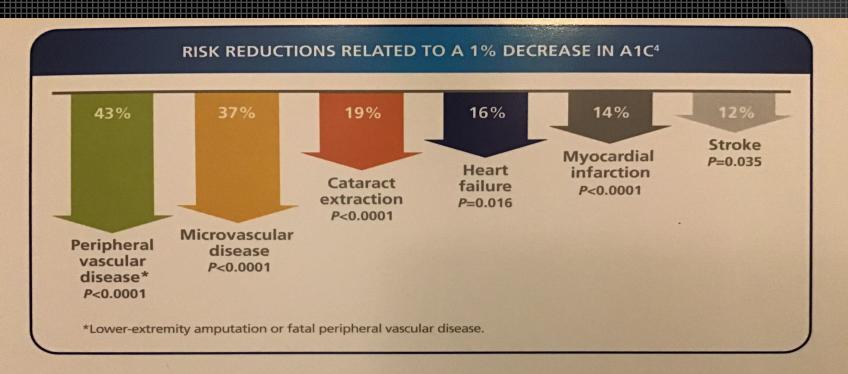
- low sodium DASH diet can reduce 11.5 / 7.1 mmHg

ACE inhibition slight edge in outcomes vs others

- most patients will require more than one agent

Goals for therapy more strict than non DM

Diabetes and the Heart Overview


- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?

Atherosclerotic Complications

- CAD
- CVA
- PAD
- lacktriangle lacktriangle lacktriangle
- Microvascular

How Important is A1C Goal?

Prospective observational study in 4585 patients newly diagnosed with type 2 diabetes to evaluate the relation between glycemia over time to the development of macrovascular and microvascular complications, in which 3642 patients had complete data for analyses of relative risk.⁴

Diabetes and the Heart /Agenda

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?

Cardiovascular Disease

Lifestyle Diet

Is Prevention of T2DM Possible?

- Insulin Resistance is primary process
 - Visceral fat mass is the key trigger
- Increasing circulating insulin then leads to CV morbidity and ASHD
- Genetic susceptibility is involved
- Sustained lifestyle change can be effective
- RCTs have shown IGT progress 60%

Lifestyle Recommendations

- Multiple RCTs have shown: (US DPP)
 - Physical activity, diet and weight loss key
 - Can slow risk of progression of IGT by 30-60%
 - Metformin use in IGT can progression
 - Can lower all cause mortality by these methods

Mediterranean or DASH Diet

Weight vigilance is key
5 portions / day fruit and vegetables
Olive oil or veg oil as main fat PUFA
Fibre + and avoid sugars
Fish > 2x per week esp oily fish
Low fat milk and meat products
Whole grains

...Lifestyle Recommendations

- Recommendations exercise
 - 3 days /wk, 45 to 60 min light/ mod
 - 1 to 3 sets of 8 to 15 reps resistance
- Physical activity increase results in
 - 2 hr post OGTT load
 Glu 23 g/dl
- Occurs in absence of weight or waist loss

DPPS US Multicenter RCTrial

- Compared 3 interventions for IGT
 - Intensive lifestyle change n = 3234 pts
 - Standard lifestyle change + Metformin
 - Placebo
- Intensive group \$\blue{1}\$58% vs placebo at 2.8 yrs T2DM
 - average wt loss 7 kg at 1 yr
 - at 10 yrs 34% less progression to T2DM
- Metformin Group less benefit, still 31% at 2.8y
- Similar trial results in Finn and Chinese studies

DPPS US Multicenter RCTrial

- Compared 3 interventions for IGT
 - Intensive lifestyle change n = 3234 pts
 - Standard lifestyle change + Metformin
 - Placebo
- Intensive group J 58% vs placebo at 2.8 yrs T2DM
 - average wt loss 7 kg at 1 yr
 - at 10 yrs 34% less progression to T2DM
- Metformin Group less benefit, still 31% at 2.8y
- Similar trial results in Finn and Chinese studies

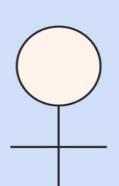
Primary Composite CV Outcomes

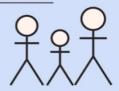
Primary Comp	oosite Cardiovas	cular Outcome			
Trial	Events/T	otal, n/N		Relative risk ratio	Risk difference
	Intensive	Conventional		(95% CI)	(95% CI)
Early trials UKPDS 33	564/2729	259/1138			
UKPDS 34	57/342	105/411	←		
Subtotal	621/3071	364/1549		0.79 (0.57 to 1.09)	-25 (-56 to
Recent trials					
ACCORD	352/5128	371/5123	<u>-</u>		
ADVANCE	557/5571	590/5569	-		
VADT	113/892	131/899	_		
Subtotal	1022/11,591	1092/11,591		0.94 (0.86 to 1.02)	-7 (-12 to -
Total	1643/14,662	1456/13,140		0.90 (0.83 to 0.98)	-15 (-24 to -
Heterogeneity $P = 0.20$; $I^2 = 33.3\%$		İ			
			0.5 1.0 2.0)	
			Relative risk (95% CI)		

Diabetes and the Heart Overview

- Epidemiology and importance of T2DM
- Cardiac implications of diabetes
- Cardiomyopathy and CHF
- Hypertension
- Atherosclerotic complications
- Lifestyle interventions
- Therapies and cardiac implications
- Which therapy?

Goals of Therapy: T2DM


- Improve Beta cell health
- Improve Insulin Resistance
- Improve Incretin effects
- Improve lipids
- Suppress Glucose reabsorption
- Suppress appetite
- Reach lifestyle goals


Why so Important? Cardiac Implications

Effects of diabetes on the individual

- Retinopathy
- Cardiovascular disease
- Nephropathy
- Neuropathy
- Foot ulcers, peripheral vascular disease, and amputations
- Elevated risk of other conditions including:
 - Tuberculosis and other infections
 - Mental health conditions, including depression
 - Alzheimer disease and general cognitive decline
 - · Liver and digestive disease
 - Erectile dysfunction
 - · Periodontal disease
 - Sleep apnea
- · Lower reported quality of life
- Increased risk of death and lower life expectancy

Effects on families:

- · Loss of productive life years
- · Cost of diabetes care
- · Lower quality of life
- Disabilities/early death of family member with diabetes can affect the mental health and activities of the entire family

Effects on society:

- Cost of treating diabetes and its complications
- Increased absenteeism and losses to the workforce

Why so Important?

Lancet 375: 2215 -22 2010

- Hazard ratios No T2DM vs 12DM
- Risk: -2 -1 0 1x 2x

CAD.....

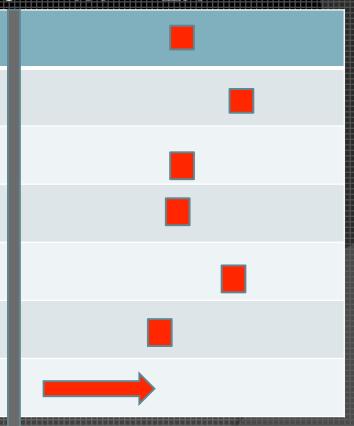
Death.....

MI non.....

All CVA.....

-ischemic....

Other Vasc..


2.31 (2 to 2.6)

1.82 (1.6 to 2.1)

1.8 (1.6 to 2.2)

2.27 (1.95 to 2.7)

1.73 (1.5 to 2.0)

Pharmacotherapeutics

l = insulin

- Metformin, increases cell sugar use, leffect and decreases gluconeogenesis
- Sulfonylureas Stimulate B cell to make more Insulin, can cause I sugar
- DPP-4 Increase levels of GLP- 1 hormone to increase I release decrease gluconeo in liver, "gliptins" ex. Linagliptin (Trajenta), sitagliptin (Januvia), saxagliptin (Onglyza)
- TZD Improves cell ability to use I, can cause fluid retention and liver issues
- SGLT-2 Allows filtration of glucose to urine without reabsorption, ↓ cardiac events
- GLP analog Acts like GLP- 1, potent incretin produced by L cells in ileum
- "glutides", ex Semaglutide (Ozempic), Linaglutide (Trulicity) Injectable, Semaglutide (Rybelsus) Oral
- Acarbose Slows absorption of starch from GI tract, limited by GI side effects

Other Pharmacologic Rx

- ACE inhibition, address RAAS
- Statins
 - Reduce all ApoB lipoproteins and LDL
 - ? Of slight increase in progression to DM in non DM
 - Net benefit in all subgroups with T2DM
- Fibrates
 - improve all lipids and reduce CVD risk (VA-HIT)
- Antihypertensives
 - Beware diuretics and non vasodilating BB

...Other Pharmacologic Rx

- Antihypertensives
 - Beware diuretics and non vasodilating BB
 - Vasodilating alpha B blockers- neutral lipids, FBS
 - * No B blockers are contraindicated in T2DM
- Orlistat
 - Weight loss, may delay onset of DMT2
- Acarbose (Precose) and Miglitol
 - may confer reduced CV risk, but S/E I

Surgical Treatments

- Can surgical management decrease risk?
- Bariatric surgery types:
 - Roux- en –Y, (RYGB) Sleeve gastrectomy, (LSG)
- Lap adjustable G banding, (LAGB)
- BilioPancreatic diversion (BPD)
- RYGB, LAGB, LSG no malabsorption
- Can have 40 to 75% remission of T2DM
- Medical/Lifestyle Rx 10 to 20% remission

"Consumer report" T2DM Guide!

Agent	Weight	Hypo Gly	// Bcell	CHF	Edema	CV/Iso	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0	0	0
DPP-4	*	**	¥	0	*	0	
TZD pio/ Rosi		*	* *			*	Pio 🛑
Rosi SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *	\circ	*	*		*	
Insulin				*		*	
Glucoside						*	

_akeland Regional Health

Consumer report Guide: SUs

_akeland Regional **Health**

Agent	Weight	Hypo Gly	// Bcell	CHF	Edema	CV/Iso	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0	0	0
DPP-4	*	**	*	0	*		
TZD pio/ Rosi		*	* *		•	*	Pio 🛑
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside						*	

Consumer report Guide: Gliptins

Agent	Weight	Hypo Gly	// Bcell	CHF	Edema	CV/Is	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0	0	\circ
DPP-4	*	* *	*	0	*		
TZD pio/ Rosi		*	* *		•	*	Pio 🔵
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside						\Rightarrow	
and Regional Health							

Consumer report Guide TZDs

akeland Regional Health

Agent	Weight	Hypo Gly	// Bcell	CHF	Edema	CV/Iso	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0	0	0
DPP-4	*	**	*	0	*		
TZD pio/ Rosi		¥	* *			*	Pio ● Rosi ★
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside						*	

Consumer report Guide: SGLT-2

Agent	Weight	Hypo Gly/ Bcell		CHF	Edema CV/Iso		chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0	0	\circ
DPP-4	*	**	*	0	*		
TZD pio/ Rosi		*	* *			*	Pio 🛑
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside						*	
xeland Regional Health							

Consumer report Guide: GLP

akeland Regional Health

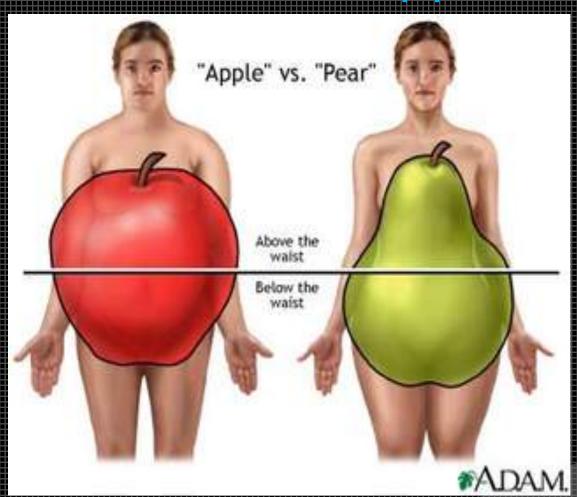
Agent	Weight	Hypo Gly	// Bcell	CHF	Edema	CV/Iso	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0		\circ
DPP-4	*	**	*	0	*		
TZD pio/ Rosi		*	* *			*	Pio 🛑
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside						*	

Consumer report Guide: Insulin

Agent	Weight	Hypo Gly	// Bcell	CHF	Edema	CV/Is	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas					0	0	\circ
DPP-4	*	**	*	0	*		
TZD pio/ Rosi		*	* *		•	*	Pio 🛑
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside						*	
eland Regional Health							

Consumer report Guide: a- Glu

GI side effects >25% D/C


Agent	Weight	Hypo Gly/ Bcell		CHF	Edema	CV/Is	chemia
Metformin	* *	* *	*	*	0	*	0
SUreas			0		0	0	\circ
DPP-4	*	* *	*	0	*		
TZD pio/ Rosi		*	* *		•	*	Pio Rosi
SGLT-2	* *	**	0	* *	* *	*	
GLP analog	* *		*	*		*	
Insulin				*	0	*	
Glucoside eland Regional Health	*					*	

Summary

- DMT2 is a burgeoning health problem
- Has significant cardiovascular risks
- Strongly associated w CHF and mortality
- Associated w hypertension and ASCVD
- Early intervention in IGT important
- Lifestyle intervention is key
- Increasingly, Rx are able to preserve B cells
- Future treatments increasingly targeted

Don't be an Apple!

Eat one! It has 5 G of soluble fiber